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Abstract

Best management practices are often written by researchers to guide land

managers and landowners in the creation of habitat for wildlife species of

interest. These documents are based on research evaluating the habitat needs of

a species, but they also describe tools and strategies managers can implement to

create or restore desired conditions. Shrub and sapling shearing is a manage-

ment practice often used to improve habitat for early-successional species, yet

little monitoring or research has focused on wildlife response to shearing. The

goal of this research was to formally evaluate the effect of shrub and sapling

shearing as a best management strategy for Golden-winged Warbler (Vermivora

chrysoptera) conservation at a regional scale. Specifically, we surveyed for male

Golden-winged Warblers during the breeding season in sheared sites and

untreated reference sites across portions of the western Great Lakes to assess the

effects of (1) management status (i.e., sheared aspen or alder vs. untreated sites)

and (2) patch-level vegetation characteristics on male abundance. We found that

male Golden-winged Warbler abundance was twice as high in sheared sites than

in mature reference sites and peaked when sapling cover was ~40%. Male abun-

dance was also negatively associated with percent cover of forbs and nonvegetated

ground. These findings highlight the importance of patch-level heterogeneity

when implementing shearing treatments for Golden-winged Warblers and

demonstrate the potential need for pretreatment site assessments to help focus

conservation efforts for this species. Ultimately, our results support the use of

a site-specific, nuanced approach to shearing implementation to maximize cost

efficiency and desired species outcomes.
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INTRODUCTION

Best management practices (BMPs) are published docu-
ments intended to guide the management or restoration
of habitats for wildlife species of conservation concern
(Youngberg et al., 2016). Effective BMPs are science-
based and rooted in an understanding of the habitat
needs of target species. Through summarization and
synthesis of published literature on a species’ habitat
needs, BMPs provide managers with conservation prac-
tices that can be implemented with the intent of creating
or enhancing habitat for target species (Bakermans,
Smith, et al., 2015; Wood et al., 2013). BMPs often
include detailed descriptions of desired habitat outcomes,
including pictures and quantitative vegetation targets
against which management success can be gauged
(Bakermans, Smith, et al., 2015; Westwood et al., 2017;
Wood et al., 2013). Ideally, BMPs are part of an adaptive
management framework where habitat and target species
outcomes are evaluated to inform the iterative refinement
of BMPs (Reever et al., 2006).

Monitoring is a critical step in the adaptive manage-
ment cycle, but it is often underfunded, poorly executed,
or forgotten altogether (Aceves-Bueno et al., 2015; Reever
et al., 2006). Because BMPs focus on the various tools
and strategies that can be used to create or improve habi-
tat, it is often easy to conduct research and monitoring
that evaluates target species response based on the man-
agement tool or treatment used (e.g., single tree vs. group
selection silvicultural systems) rather than specific vege-
tation metrics (i.e., basal area and understory density).
Yet, wildlife monitoring that evaluates target species
response based on habitat-treatment category alone
may run the risk of oversimplifying the range of habitat
variation that can occur across sites treated in the same
manner (Akresh et al., 2021; Hanle et al., 2020).
Successful adaptive management for biological conserva-
tion requires thoughtful planning and implementation of
actions and scientifically meaningful monitoring of
outcomes (Martin, Kitchens, & Hines, 2007; Nichols &
Williams, 2006). Well-designed monitoring of BMPs is
rare (McNeil, Rodewald, Robinson, et al., 2020; Nareff
et al., 2019) and is most effective when monitoring is
based on management-oriented hypotheses (Nichols &
Williams, 2006; Reiley et al., 2019) and provides an
assessment of target species response to multiple vegeta-
tion characteristics (Martin, Kitchens, & Hines, 2007).

One species that has been the focus of increasingly
widespread conservation is the Golden-winged Warbler
(Vermivora chrysoptera), a migratory songbird species
that breeds across eastern North America, primarily
across the Appalachian Mountains and Upper Great Lakes
region (Confer et al., 2020). Golden-winged Warblers

require early-successional habitats (like young forests and
shrublands) within predominantly deciduous forested
landscapes for nesting and brood rearing (Confer et al.,
2020). Historically, these vegetation communities were
maintained through disturbances such as wind events,
flooding from beavers (Castor canadensis), wildfire, and
agricultural practices and burning by Native American
peoples (Askins, 1998; DeGraaf & Miller, 1996; Litvaitis
et al., 1999). More recently, the suppression of flooding
and fires and habitat loss from land use change have
reduced the amount of early-successional forest and
shrubland habitat across the Eastern United States
(King & Schlossberg, 2014; Trani et al., 2001), and
many bird species have experienced population declines in
correlation with this loss of habitat (Askins, 1998; Sauer
et al., 2020). Like other early-successional specialists, the
Golden-winged Warbler is experiencing long-term popula-
tion declines (Sauer et al., 2020), making it a species of
conservation concern in the United States (USFWS, 2008)
and listed as threatened in Canada (Environment
Canada, 2014). North American Breeding Bird Survey data
suggest a range-wide −1.85% (95% CI: −2.57% to −1.13%)
population change per year between 1966 and 2019
(Sauer et al., 2020). It is widely accepted that successful con-
servation of early-successional forest birds, including the
Golden-winged Warbler, relies, in part, on restoring or
mimicking natural disturbances to create breeding habitat
on both public and private land (King & Schlossberg, 2014;
Litvaitis et al., 2021; McNeil, Rodewald, Robinson, et al.,
2020; Roth et al., 2019; Smetzer et al., 2014).

To address the need for habitat management
efforts to stem population losses in this species, the
Golden-winged Warbler Working Group created BMPs
(published in 2012, revised in 2019) to aid land managers
with the creation and enhancement of Golden-winged
Warbler breeding habitat (Golden-winged Warbler
Working Group, 2019). The BMPs and the corresponding
conservation plan explain landscape- and patch-scale fac-
tors affecting habitat use by Golden-winged Warblers,
such as landscape-scale forest cover and composition and
patch-level canopy, mid-story, and understory vegetation
characteristics (Roth et al., 2019). The BMPs highlight a
variety of practices for different plant communities that
can be used to achieve target habitat metrics to create
and enhance Golden-winged Warbler breeding habitat
(Golden-winged Warbler Working Group, 2019).

One management practice suggested in the Golden-
winged Warbler BMPs is mowing or shearing shrubs
and saplings (hereafter “shearing”; Golden-winged
Warbler Working Group, 2019). Shearing is used to
mimic natural disturbances in shrub and sapling commu-
nities (e.g., beaver activity, etc.; Hanowski et al., 1999;
Sargent & Carter, 1999; Zuckerberg & Vickery, 2006) by
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targeting mature and senescent shrubs and dense,
homogenous stands of aging saplings (2–10 cm in diameter
and in a stem exclusion stage of forest stand development).
Shearing helps to reestablish interspersed woody and herba-
ceous vegetation structure and is hypothesized to increase
the longevity of the site for early-successional wildlife,
including breeding Golden-winged Warblers (Hanowski
et al., 1999; Roth et al., 2019; Sargent & Carter, 1999;
Zuckerberg & Vickery, 2006). Shearing can reestablish a
more structurally diverse vegetation community by opening
the canopy and allowing for the release of herbaceous
growth such as ferns, forbs, grasses or sedges, and bram-
bles. Shearing encourages stump and root sprouting of
species, like alder (Alnus spp.), willow (Salix spp.), aspen
(Populus spp.), and maple (Acer spp.), creating patches of
dense woody stems that can be used to increase structural
complexity of vegetation known to be important for
many wildlife species (Leuenberger et al., 2017; Tews
et al., 2004). Although shearing is a common manage-
ment practice recommended for early-successional forest
wildlife conservation (Gilbart, 2012; Kelley et al., 2008;
Litvaitis et al., 2021; Roth et al., 2019), surprisingly little
research has focused on evaluating wildlife responses to
shearing (Bakermans, Ziegler, & Larkin, 2015; Hanowski
et al., 1999; Masse et al., 2015; McNeil et al., 2017).

To assess the merit of shearing for creating or
enhancing habitat for the Golden-winged Warbler, we
developed a large-scale regional study whereby we moni-
tored biological responses to sites treated with this conser-
vation practice. Specifically, we surveyed for male
Golden-winged Warblers during the breeding season in
sheared sites and untreated reference sites across portions
of the western Great Lakes to assess the effects of (1) man-
agement status and interaction with two plant communi-
ties, sapling-dominated aspen forest and alder-dominated
shrubland, and (2) the patch-level vegetation characteris-
tics on male Golden-winged Warbler abundance.

METHODS

Study area

We estimated Golden-winged Warbler abundance and
measured associated vegetation at 243 sites in Minnesota
and Wisconsin, USA (between 45.1� and 48.6� latitude
and −89.2� and −95.6� longitude; Figure 1). Sites were
even-aged alder-dominated shrublands or sapling-
dominated aspen forests and located within landscapes
dominated by deciduous forests. From 2013 to 2018, the

F I GURE 1 Black dots indicate the 243 sites where Golden-winged Warbler point count surveys were conducted during the 2012–2013
and 2015–2018 breeding seasons. The dark gray polygon represents the 2011 Golden-winged Warbler breeding range as delineated by the

Golden-winged Warbler Working Group.
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American Bird Conservancy, Wisconsin Young Forest
Partnership, and several state, federal, and county part-
ners helped identify private and public sites in Wisconsin
and Minnesota where implementation of the Golden-
winged Warbler BMPs via shearing was either planned or
previously implemented. Alder sites were sheared follow-
ing Golden-winged Warbler BMPs using small, tracked
machines with mower attachments (e.g., brush hog and
Fecon) during winter when the ground was frozen. The
intent was to regenerate woody vegetation through cop-
picing (stump sprouting) while also opening growing
space for herbaceous components such as grasses, sedges,
ferns, and forbs. When present, scattered trees were
retained across sites, and patches of dense shrubs and
saplings were left uncut to promote the heterogeneous
conditions preferred by Golden-winged Warblers. We
considered sites that were 0–3 growing seasons postshear
as “managed” sites (n = 235) and alder shrubland sites
>20 years since management (n = 44) as unmanaged
“reference” sites (Figure 2). Managed sites were domi-
nated either by sheared alder shrubland (0–3 growing
seasons) or sheared aspen stand (0–2 growing seasons).
Managed alder and aspen sites averaged 3.82 ha (ranging
from 0.12 to 29.87 ha). Reference alder sites had future
shearing plans that averaged 5.03 ha (ranging from 0.28
to 29.87 ha), but on most sites, alder communities
expanded beyond proposed treatment areas. Reference
sites were unmanaged for at least 20 years prior to moni-
toring and dominated by tall alder (>3 m tall) with deca-
dent, horizontal stems that shaded much of the ground.
Scattered herbaceous vegetation used by Golden-winged
Warblers for nesting was present, but very limited, at
most reference sites. The exact age of reference alder sites
was unknown, so we grouped all reference sites into a
single “mature” growing season category. We did not
survey stands of aspen in the stem exclusion stage
because it is well documented that nesting Golden-winged

Warblers are very uncommon during this successional
stage due to uniform coverage of high sapling density that
eliminates ground vegetation the species requires for
nesting (Bakermans, Smith, et al., 2015; Martin, Lutz, &
Worland, 2007; Roth & Lutz, 2004). Soil conditions ranged
from dry upland to saturated lowland, with patches of
standing water on some sites at the time of survey. We
used ArcGIS (ESRI, 2010) to place a single survey point in
the geometric center of each managed or reference site to
maximize survey coverage. We ensured that all survey
points were at least 250 m apart to maintain independence
of observations and minimize the potential for double
counting individuals (Ralph et al., 1995).

Field methods

We counted male Golden-winged Warblers at each site
using a passive 10-min point count between May 25 and
July 2 each year (2012–2013, 2015–2018; n = 1222 point
counts conducted). Points were visited once annually in
2012–2013 (n = 13 points per year) and twice annually in
2015–2018 (n = 68–217 points per year), and surveys were
conducted in favorable weather conditions (no heavy pre-
cipitation, wind, or fog) and between 30 min before sun-
rise and 5 h after sunrise. Prior to the start of each point
count, we recorded survey metadata including weather
conditions (precipitation type, Beaufort wind index, per-
cent cloud cover [0%–100%] rounded to the nearest 25%),
point location, date, survey start time, and observer iden-
tity. Beaufort wind categories 0–2 were combined into a
low wind index category, and Beaufort categories 3–5 were
combined to make a high wind index category for model-
ing. All visually and aurally detected Golden-winged
Warblers were recorded, as well as detection type
(visual, audio, or both), sex, and distance (estimated to the
nearest 5 m). At sheared sites, we noted whether each

F I GURE 2 (A, B) The distinctive changes in postshearing vegetation structure at an alder-dominated shrubland stand in Lincoln

County, WI, from early July during the first growing season (A) to late June during the second growing season (B). For comparison,

(C) shows the dense structure of a mature alder stand that has not experienced disturbance in over 20 years. Photos by A. Buckardt Thomas.
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Golden-winged Warbler detected was inside or outside the
treatment footprint.

We collected vegetation data at each location where
Golden-winged Warblers were surveyed during 2015–2018
to examine relationships between male Golden-winged
Warbler abundance and patch-level habitat characteristics.
We determined vegetation variables to sample based on
existing literature on Golden-winged Warbler breeding
habitat use and selection (Aldinger et al., 2015;
Bakermans, Smith, et al., 2015; Bulluck & Harding, 2010;
Leuenberger et al., 2017; Martin, Kitchens, & Hines, 2007;
McNeil et al., 2017; McNeil, Rodewald, Ruiz-Gutierrez,
et al., 2020; Peterson et al., 2016; Rossell et al., 2003;
Terhune II et al., 2016) and the Golden-winged Warbler
Conservation Plan (Roth et al., 2019). We sampled vegeta-
tion annually each field season from early July to August,
except at reference sites, which we only surveyed once
under the assumption that the vegetation structure at
these sites remained consistent throughout the duration of
our sampling. We quantified vegetation characteristics
along three 100-m-long transects radiating from each point
count location at 0-, 120-, and 240-degree azimuths. Every
10 m along each transect (n = 30 locations/transect), we
used an ocular tube (James & Shugart, 1970) to record the
presence or absence of vegetation strata: bare ground, leaf
litter, graminoids (grass and sedge), forbs, ferns, Rubus,
shrubs, saplings, and canopy trees. Leaf litter and bare
ground strata were combined into nonvegetated strata for
modeling. At the same 30 locations, we recorded the pres-
ence or absence of woody regeneration (shrubs and sap-
lings) in four categories (none, small [0–1 m tall], medium
[>1–2 m tall], and large [>2 m tall]) within a 1-m-radius
area, for a site-level percent occurrence value of each
category. Although we aimed for 30 locations of sampling
at each site, we truncated transect lengths when they
extended beyond the boundary of a treatment footprint,
thus resulting in fewer than 30 subplots for some sites with
irregular boundaries or a small footprint. We estimated
patch-level cover and occurrence values for each vegeta-
tion component by dividing the number of subplots where
a component was present by the total number of subplots
sampled. Percent occurrence (measured at 1-m-radius
woody regeneration plots) differs from the commonly used
percent cover metric (which was used for other metrics in
this study) because it does not take the density of each
habitat element into account, only its presence or absence
throughout the site.

Statistical methods

We plotted the average and 95% confidence interval of the
percent cover or percent occurrence of each vegetation

component to quantify and visualize changes in patch-level
vegetation during our study. Average vegetation values were
calculated for each unique plant community (alder or aspen)
and growing season (0, 1, 2, 3, and mature) combination.

We used N-mixture models (Royle, 2004) to compare
the relative abundance of male Golden-winged Warblers
across sites. There is some concern regarding the reliability
and robustness of density estimates produced by N-mixture
models (Barker et al., 2017; Link et al., 2018). However, we
felt comfortable drawing inferences from N-mixture esti-
mates because we were making relative assessments and
not absolute density estimates (Kéry, 2018). Models were
run in program R (R Core Team, 2021) using package
unmarked (Fiske & Chandler, 2011), and model rank
was assessed using corrected Akaike information criterion
(AICc) adjusted for small sample sizes (Akaike, 1974;
Burnham & Anderson, 2002).

We created two model sets to investigate the relation-
ship between Golden-winged Warbler abundance: (1) treat-
ment effects and (2) patch-level vegetation characteristics.
The first model set (hereafter referred to as management
models) examined the influence of time-since-management
and management category on Golden-winged Warbler
abundance and included data from all sites surveyed from
2012 to 2018 (n = 243 sites). Though data from 2012 to
2013 were limited (n = 13 sites), they bolstered the sample
size of sheared alder sites in later growing seasons and
increased the temporal and geographic scope of the dataset
to more confidently quantify treatment effects. The second
model set (hereafter referred to as vegetation models)
tested the impact of specific patch-level vegetation compo-
nents on Golden-winged Warbler abundance and incorpo-
rated avian and vegetation data collected from 2015 to
2018 (n = 230 sites). We did not combine the two model
sets primarily because of the inherent overlap in habitat
category and the vegetation characteristics produced by
management and, secondarily, because vegetation assess-
ment protocols in 2012 and 2013 differed from those in
2015–2018. The sampling units for modeling were each
unique site-year combination (n = 637), and count data
from multiple visits to a site in a single year were stacked
(Kéry & Royle, 2016). For each model set, we first identi-
fied the best detection model (limited to three variables or
fewer) and then modeled abundance by comparing all
model combinations of up to three variables. Detection and
abundance components of the models were limited to three
variables each to avoid overparameterizing models
(MacKenzie et al., 2018).

Golden-winged Warbler count data were truncated
to include only males detected within 100 m, which
eliminated ~3% of detections. Pearson’s correlation coeffi-
cient (r) matrix was calculated between all pairwise com-
binations of vegetation variables. The majority of variable
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combinations had jrj values <0.7 and were not considered
correlated (Sokal & Rohlf, 1969). However, small woody
regeneration was correlated with no woody regeneration
(r = −0.72); thus, these two variables were never included
in the same model. Either the linear or quadratic form of
each vegetation variable was selected for inclusion in the
final vegetation model set based on AICc rank of single
variable models. A list of final variables included in the
two model sets can be found in Table 1.

Model selection and abundance estimation

We used AICc model ranking (Akaike, 1974; Burnham &
Anderson, 2002) to evaluate models and 85% confidence
intervals of variable β estimates to evaluate model variables
(Arnold, 2010). Models within 2 ΔAICc and with nonzero
β coefficients were considered to be top-supported models.
For both model sets, we first identified the best detection
model (limited to three detection variables or fewer;
Table 1) and kept that top detection component when
building the abundance component of the rest of the
models (Burnham & Anderson, 2002). For the abundance
component of the management model set, we started by
testing the influence of treatment on abundance. Because
the treatment model performed better than the null, we
kept treatment as our base abundance model and added all
possible combinations of up to two more management vari-
ables (n = 17 models; variables in Table 1) to build our
final management model set. To model the abundance
component of the vegetation model set, we created all pos-
sible model combinations of up to three vegetation vari-
ables (Table 1), which resulted in n = 368 models. Relative
abundance of male Golden-winged Warblers was estimated
using the best-supported models and is presented as
males/100-m-radius survey (3.14 ha). When making direct
comparisons between abundance estimates for a particular
variable, all but the variable of interest were held constant.

RESULTS

We visited 242 sites to conduct 1223 point count surveys
resulting in 1243 male Golden-winged Warblers detected
during 741 point count surveys (60.6% of surveys).
Twenty-four Golden-winged Warbler point counts were
conducted across 13 sheared alder sites in north-central
Wisconsin over the 2012 and 2013 breeding seasons,
and between 2015 and 2018, an additional 1199 point
counts were conducted at 229 sites throughout the
Golden-winged Warbler’s breeding range in Wisconsin
and Minnesota (Figure 1). This resulted in sampling at
36 sites that were surveyed as mature alder reference and

again in future years as sheared alder: 9 mature alder
reference sites, 138 sheared alder sites, and 59 sheared
aspen sites. Each unique site-year combination (with
multiple point count visits stacked) was treated as an
independent sampling unit, resulting in 56 mature alder
shrubland, 460 sheared alder shrubland (162 with zero
growing seasons elapsed, 132 with one growing season
elapsed, 101 with two growing seasons elapsed, and
65 with three growing seasons elapsed), and 122 sheared
aspen sapling (33 with zero growing seasons elapsed,
49 with one growing season elapsed, and 40 with two
growing seasons elapsed) samples.

Patch-level vegetation structure varied by plant com-
munity (aspen or alder) and growing season (Figure 3).
The percent occurrence of small woody regeneration did
not differ by plant community, but it was greater in the
first four growing seasons after shearing (e.g., alder GS2:
73.6; 95% CI: 67.9–79.3) than at mature alder reference
sites (41.7; 95% CI: 36.3–47.1; Figure 3D). The percent
occurrence of large woody regeneration and the percent
cover of saplings were greater for aspen sites than alder
sites during the first three growing seasons (Figure 3B,F)
and relatively high at mature alder reference sites (large
woody regeneration: 58.1, 95% CI: 52.0–64.3; sapling: 54.1,
95% CI: 48.8–59.3). There was more Rubus cover at aspen
sites (GS0: 34.3, 95% CI: 26.4–42.2, GS1: 25.0, 95% CI:
19.0–31.0, and GS2: 53.3, 95% CI: 44.5–62.1), than alder
sites (GS0: 13.3, 95% CI: 10.5–16.1; GS1: 14.8, 95% CI:
11.3–18.3; and GS2: 19.7, 95% CI: 14.4–25.0) over the first
three growing seasons after shearing (Figure 3J) and was
lowest at mature alder reference sites (8.8, 95% CI:
7.2–10.4).

Management model results

Detection probability in the management model set
(Appendix S1: Table S1) was best modeled by a
zero-inflated Poisson distribution with variables for percent
cloud cover (β = −0.005 ± 0.002 85% CI), ordinal date
(β = −0.22 ± 0.08 85% CI), and Beaufort wind index
(β = −0.28 ± 0.14 85% CI). After accounting for detection
probability and confirming a treatment effect, our
management model set indicated only one competing
abundance model (ΔAICc < 2.0; Table 2), which included a
positive effect of treatment (βsheared = 0.69 ± 0.22 85% CI)
as well as effects of year (β2013 = 1.42 ± 1.58 85% CI;
β2015 = 2.70 ± 1.45 85% CI; β2016 = 2.73 ± 1.45 85% CI;
β2017 = 2.74 ± 1.45 85% CI; β2018 = 2.48 ± 1.45 85% CI) and
latitude (β = −0.13 ± 0.06 85% CI; Table 2). Growing sea-
son was not included in the top model, indicating it was
not an important contributor to the variation in male
Golden-winged Warbler abundance. The top model in our
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TAB L E 1 Variables included in N-mixture models of male Golden-winged Warbler abundance based on point count surveys conducted

in Minnesota and Wisconsin from 2012 to 2018.

Variable Description
Model
set

Model
component

Day Ordinal date of survey Both Detection

TSS Time since sunrise, calculated as the difference in survey start
time and sunrise time

Both Detection

Wind Binomial category for low (Beaufort wind force scale category 0–2)
and highwind (Beaufort wind force scale category 3–5)

Both Detection

Cloud Percent of cloud cover at the start of the survey to the
nearest 25%

Both Detection

Year The year in which the survey was conducted Both Abundance

Community Plant community; alder-dominated or aspen-dominated Both Abundance

Lat Latitude of survey point Man Abundance

Lon Longitude of survey point Man Abundance

Area Hectares sheared at each site; with unsheared, reference sites
having 0 ha sheared

Man Abundance

GS No. growing seasons since treatment in five categories:
0, 1, 2, 3, and mature

Man Abundance

Treatment Treatment status of the survey site; either sheared or unsheared
reference

Man Abundance

Canopy Site-level percent cover of canopy trees at ocular tube sample
points

Veg Abundance

Shruba Site-level percent cover of shrubs at ocular tube sample points;
shrubs had multiple main stems with branching at/below
the soil

Veg Abundance

Saplinga Site-level percent cover of saplings at ocular tube sample
points; saplings were 10 cm or taller, <10-cm dbh, and had
one main stem with branching occurring above the soil

Veg Abundance

Forb Site-level percent cover of forbs at ocular tube sample points Veg Abundance

Ferna Site-level percent cover of ferns at ocular tube sample points Veg Abundance

Graminoida Site-level percent cover of grass and sedge at ocular tube
sample points

Veg Abundance

Rubus Site-level percent cover of Rubus spp. at ocular tube sample
points

Veg Abundance

Nonveg Site-level percent cover of nonvegetated ground (bare ground
or leaf litter) at ocular tube sample points

Veg Abundance

S.Regen Site-level percent occurrence of small woody regeneration
(woody stems 0–1 m tall) based on presence/absence in
1-m-radius subplots

Veg Abundance

M.Regena Site-level percent occurrence of medium woody regeneration
(woody stems 1–2 m tall) based on presence/absence in
1-m-radius subplots

Veg Abundance

L.Regena Site-level percent occurrence of medium woody regeneration
(woody stems >2 m tall and <10 cm in diameter) based on
presence/absence in 1-m-radius subplots

Veg Abundance

N.Regen Site-level percent occurrence of no woody regeneration based
on presence/absence in 1-m-radius subplots

Veg Abundance

Note: Variables are categorized by their inclusion in the detection or abundance component of the model and whether they were included in the management
(Man) or vegetation (Veg) model set, or both.
aVariables that were modeled as quadratic terms.
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F I GURE 3 The average percent cover (% cov; A, canopy; B, sapling; C, shrub; G, graminoid; H, forb; I, fern; J, rubus; and

K, nonvegetated) and occurrence (% occ; D, small woody regeneration; E, medium woody regeneration; F, large woody regeneration; and L,

no woody regeneration) of patch-level vegetation values measured at Wisconsin and Minnesota Golden-winged Warbler point count

locations during the 2015–2018 breeding seasons stratified by growing season category and plant community type (Comm.). Error bars

represent 95% confidence intervals. All averages and confidence intervals were derived from a minimum of 32 samples per growing

season/cover category (n = 32 for aspen cover, growing season 0).
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management set suggested that sheared sites had a mean
Golden-winged Warbler abundance of 2.89 males/survey
(95% CI: 2.27–3.66), whereas untreated sites had half this
abundance: 1.39 males/survey (95% CI: 0.96–2.02).

Patch-level vegetation model results

Detection in the vegetation model set (Appendix S1:
Table S2) was best predicted by a zero-inflated Poisson dis-
tribution with variables for ordinal date (β = −0.24 ± 0.08
85% CI), Beaufort wind index (β = −0.23 ± 0.14 85% CI),
and time since sunrise (β = −0.10 ± 0.07 85% CI).
There was one abundance model <2 ΔAICc in the
patch-level vegetation model set. The top abundance model
(Table 3) included sapling2 (β = −0.15 ± 0.06 85% CI), forb
(β = −0.10 ± 0.05 85% CI), and nonvegetated ground
(β = −0.15 ± 0.05 85% CI) and had a c-hat value of 0.87. In
particular, the top model suggested Golden-winged Warbler
abundance was greatest (abundance = 3.46 males/survey
[95% CI: 2.54–4.71]; Figure 4) at intermediate sapling cover
(~40%) and low levels of nonvegetated (abundance = 4.07
males/survey [95% CI: 2.93–5.66] at 0% nonvegetated;
Figure 4) and forb cover (abundance = 4.32 males/survey
[95% CI: 3.05–6.10] at 0% forb cover; Figure 4).

DISCUSSION

Our study demonstrated how an imperiled wildlife
species, the Golden-winged Warbler, responded to habitat
BMPs implemented in two important plant communities

(Roth et al., 2019) in temperate deciduous forest land-
scapes of the western Great Lakes region. Shearing sapling
stands and shrublands as outlined by species BMPs
resulted in significant increases in Golden-winged Warbler
abundance as soon as the first growing season
posttreatment. Hanowski et al. (1999) found higher densi-
ties of Golden-winged Warblers at unmanaged shrub wet-
lands than sheared and/or burned shrub wetlands in
Minnesota. However, in that study, sites were treated to
encourage open emergent wetland conditions and not
selected or treated to enhance or create habitat conditions
specific to any species, such as was done in our study.
Work by McNeil et al. (2018) quantified Golden-winged
Warbler abundance in a similar habitat type in
Pennsylvania, unmanaged shrub wetlands, and reported
abundance (1.32 males/survey) to be similar to our obser-
vations for unmanaged alder stands (1.39 males/survey).
Prior to our study, it was well recognized that
closed-canopy stands dominated by sapling-diameter trees
(i.e., stem exclusion; ~9–15 years) host very few nesting
Golden-winged Warbler pairs (Bakermans, Smith,
et al., 2015; Martin, Lutz, & Worland, 2007; Otto &
Roloff, 2012; Roth & Lutz, 2004). Our work provides justi-
fication for the use of shrub or sapling shearing
(as outlined by the species’ BMPs; Roth et al., 2019) to pro-
long or restore the productive life of Golden-winged
Warbler nesting habitat patches. In the Great Lakes
region, the typical rotation length for aspen stands is
35–70 years (Perala, 1977; WI DNR, 2020), extending well
beyond the early-successional stage when nesting
Golden-winged Warblers are present. Regenerating aspen
forests in the context of a full rotation would likely result

TAB L E 2 The top five male Golden-winged Warbler abundance models in the management model set with the null and base models

for comparison.

Abundance models with βs and 85% CI K ΔAICc Likelihood W

treatment(sheared[0.73 ± 0.22]) + year(2013[1.42 ± 1.58]; 2015[2.70 ± 1.45];
2016[2.73 ± 1.45]; 2017[2.74 ± 1.45]; 2018[2.48 ± 1.45]) + latitude(−0.13 ± −0.06)

13 0.00 1.00 0.73

treatment(sheared[0.59 ± 0.22]) + latitude(−0.36 ± 0.09) + longitude(−0.33 ± 0.09) 9 2.27 0.32 0.24

treatment(sheared[0.69 ± 0.23]) + year(2013[1.39 ± 1.55]; 2015[2.37 ± 1.42];
2016[2.49 ± 1.42]; 2017[2.52 ± 1.42]; 2018[2.19 ± 1.42]) + area(0.006 ± 0.005)

13 8.18 0.02 0.01

treatment(sheared[0.69 ± 0.23]) + year(2013[1.42 ± 1.58]; 2015[2.43 ± 1.45];
2016[2.48 ± 1.45]; 2017[2.52 ± 1.45]; 2018[2.22 ± 1.45])
+ community(aspen[0.14 ± 0.12])

13 8.495 0.01 0.01

treatment(sheared[0.74 ± 0.22]) + year(2013[1.43 ± 1.58]; 2015[2.43 ± 1.45];
2016[2.53 ± 1.45]; 2017[2.56 ± 1.45]; 2018[2.25 ± 1.45])

12 9.08 0.01 0.01

treatment(sheared[0.64 ± 0.22]) 7 31.60 0.00 0.00

intercept(1.03 ± 0.16) 6 49.57 0.00 0.00

Note: βs for each model variable are shown and bolded when 85% confidence intervals do not include zero (significant). Models were derived from data
collected in Minnesota and Wisconsin from 2012 to 2013 and 2015–2018. The number of model variables (K), delta corrected Akaike information criterion
(ΔAICc) adjusted for small sample size, model likelihood, and model weight (W) are shown.
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in the stand being unoccupied by nesting Golden-winged
Warblers for up to 60 years. Thus, shearing following
BMPs every 10–20 years, depending on site conditions,
appears to be a reliable way to maintain patch-level
Golden-winged Warbler abundance in stands undergoing
regeneration.

Shearing resulted in immediate target species response,
though the number of growing seasons postshearing did not
explain much variation in abundance over the first four
growing seasons. Other studies of Golden-winged Warbler
ecology suggest that within regenerating woody communi-
ties, it may take multiple years after management to reach
maximum male abundance (Otto & Roloff, 2012; Roth
et al., 2019). Indeed, regenerating early-successional sites

treated with shearing and timber harvest may be
occupied for up to 16 years postharvest in other systems
(e.g., Klaus & Buehler, 2001), or sometimes even mature
alder shrublands may be occupied (as in this study).
Initial warbler response to management may be limited at
sites where all woody vegetation is sheared, increasing
only after woody vegetation has had 1–2 growing seasons
to regenerate. However, the BMPs recommend retaining
50% of shrubs and saplings as patches within the sheared
footprint, which left ample patches of legacy woody vege-
tation scattered throughout the management footprint,
thus immediately creating structural conditions attractive
to nesting pairs (Golden-winged Warbler Working
Group, 2019). This is supported by past research on aspen

TAB L E 3 The top ranked N-mixture Golden-winged Warbler abundance models in the vegetation model set within five delta corrected

Akaike information criterion (ΔAICc) and the null model for comparison.

Abundance models with βs and 85% CI K ΔAICc Likelihood W

sapling(0.09 ± 0.07) + sapling2(−0.15 ± 0.06) + forb(−0.10 ± 0.05)
+ nonveg(−0.15 ± 0.05)

10 0.00 1.00 0.39

sapling(0.07 ± 0.07) + sapling2(−0.15 ± 0.06) + nonveg(−0.17 ± 0.06)
+ shrub(−0.05 ± 0.06) + shrub2(−0.08 ± 0.06)

11 2.17 0.34 0.13

sapling(0.03 ± 0.08) + sapling2(−0.14 ± 0.06) + nonveg(−0.15 ± 0.05)
+ fern(0.14 ± 0.08) + fern2(−0.09 ± 0.05)

11 2.28 0.32 0.13

sapling(0.09 ± 0.07) + sapling2(−0.16 ± 0.06) + nonveg(−0.15 ± 0.05)
+ canopy(−0.07 ± 0.06)

10 4.65 0.10 0.04

sapling(0.06 ± 0.07) + sapling2(−0.14 ± −0.06) + nonveg(−0.19 ± 0.07)
+ graminoid(−0.10 ± −0.08) + graminoid2(−0.71 ± 0.06)

11 4.75 0.09 0.04

sapling(0.06 ± 0.07) + sapling2(−0.17 ± −0.06) + nonveg(−0.14 ± 0.06)
+ m.regen(0.08 ± −0.07) + m.regen2(0.10 ± 0.07)

11 4.76 0.09 0.04

intercept(1.07 ± 0.18) 6 29.51 0.00 0.00

Note: βs for each model variable are shown and bolded when 85% confidence intervals do not include zero. The number of model variables (K), ΔAICc adjusted
for small sample size, the model likelihood, and the model weight (W) are shown.

F I GURE 4 The influence of top patch-level vegetation model (<2ΔAICc) variables (with significant βs) on relative male Golden-winged

Warbler (GWWA) abundance plotted with 95% confidence intervals. The sampling distribution for each variable is shown along the x-axis.

Data were collected in Minnesota and Wisconsin from 2015 to 2018.
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forests in our study region, where Golden-winged Warblers
only persisted in sapling-sized stands when patches of
shrubby habitat with relatively open canopy occurred within
the stand (Roth & Lutz, 2004). The importance of heteroge-
neous microhabitat conditions (e.g., early-successional
patches within otherwise more advanced successional sites)
has also been found in high-elevation pastures in the
Appalachian Mountains, where Golden-winged Warbler
populations persisted for up to 33 years posttreatment,
though density peaked much earlier (Aldinger, 2018). Given
that monitoring in this study focused only on the first few
years after treatment, it is highly likely that we lacked suf-
ficient temporal variation to capture species responses to
the effect of growing season progression. Regardless, the
immediate response by Golden-winged Warblers observed
in this study is promising, and we would expect the treat-
ment effect to only become more pronounced as density is
afforded more time to reach its maximum.

Golden-winged Warbler abundance was more
influenced by patch-level vegetation attributes than plant
community type. While the Golden-winged Warbler is
known to have an affinity for certain forest community
types (McNeil, Rodewald, Ruiz-Gutierrez, et al., 2020)
and select for or against certain plant species when
foraging (Bellush et al., 2016), vegetation structure is
also an important habitat feature (Bakermans, Smith,
et al., 2015; McNeil et al., 2018; Roth et al., 2014). When
managing nesting habitat, multiple studies have reported
that the plant community composition is less important
than the presence of necessary habitat elements, includ-
ing patches of shrubs, saplings, and herbaceous vegeta-
tion within a landscape otherwise dominated by
deciduous forest (McNeil et al., 2017; Roth et al., 2019;
Terhune II et al., 2016). One of the most important func-
tional patterns we detected was the quadratic relation-
ship between Golden-winged Warbler abundance and
sapling cover, where male abundance peaks at around
40% cover. Golden-winged Warblers use saplings for song
perches and for foraging substrate (Confer et al., 2020;
Fiss et al., 2021). Having too few saplings results in a site
that lacks the structural complexity required by the spe-
cies (Roth et al., 2019), while having too many saplings can
result in the herbaceous understory being shaded out. Heavy
shading leads to a ground layer comprised mostly of leaf lit-
ter and bare ground, or nonvegetated cover. Herbaceous
ground cover, particularly grass or sedge cover, is an impor-
tant patch-level habitat feature for Golden-winged Warbler
nest building and concealment (Aldinger et al., 2015; Confer
et al., 2020; Terhune II et al., 2016). As indicated by our
models, Golden-winged Warbler abundance is negatively
associated with nonvegetated cover. Thus, a mixture of
patch-level vegetation attributes (sapling cover, forb cover,
and nonvegetated cover) that result in structural complexity

support the highest densities of Golden-winged Warblers.
This finding supports the idea that, when managing stands
with a high sapling or shrub density, shearing should be
conducted in such a way that some existing saplings and
shrubs are retained in the stand to support structural hetero-
geneity (Roth et al., 2019). Additionally, previous studies
have found that a diversity of forest ages and structures,
including dense sapling stands unsuitable for nesting, are
important foraging habitat for postfledging Golden-winged
Warblers (Fiss et al., 2020, 2021; Streby et al., 2016),
so maintaining patches of taller saplings within sheared
areas will likely support Golden-winged Warblers during
both nesting and postfledging periods.

Our study highlights the importance of pretreatment
target species assessments, particularly at shrubland sites
dominated by alder. Although Golden-winged Warbler
abundance was higher at sheared sites than untreated sites,
mature alder reference sites still regularly supported low
numbers of Golden-winged Warblers. To ensure limited
conservation resources are prioritized to focus on
shrublands that host low warbler densities, we recommend,
when possible, a pretreatment Golden-winged Warbler sur-
vey be standard practice before managing alder shrublands
to ensure that potential treatment areas do not already sup-
port high territory densities. Based on our results, imple-
mentation of the shearing BMPs in the Great Lakes region
is most beneficial when existing male abundance is less
than 0.32 males/ha at a given site (or about 1 male per
3.14 ha survey). BMPs recommend retaining 50% of the
shrubby vegetation in patches when shearing areas larger
than 2 ha to maintain the desired heterogeneity (Golden-
winged Warbler Working Group, 2019). Retaining some
legacy structure when treating a site has been shown to
increase overall bird species diversity (Hanle et al., 2020).
Additionally, shearing is not recommended if the vegetation
structure of small-diameter woody stems is already patchy
with scattered canopy trees and interspersed with herba-
ceous vegetation (Roth et al., 2019), because it is unlikely
that shearing will improve conditions for nesting.

Our study focused on territorial male response to shear-
ing habitat used for nesting during the breeding season,
though this demographic metric may not be the ideal indi-
cator of habitat quality (Johnson, 2007; Van Horne, 1983).
However, high Golden-winged Warbler male density
(>0.2 males/ha) was indicative of relatively high pairing
and nest success in aspen forests managed using the
clearcut with reserves method within our study area,
which suggests that high male abundance observed in the
present study may be associated with high-quality
habitat (Roth et al., 2014). Recent work by McNeil,
Rodewald, Robinson, et al. (2020) also examined the
relationship between species’ response to habitat restora-
tion (i.e., regional occupancy probability) and local nest or
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fledgling survival and found the two to be highly correlated.
Future work that quantifies Golden-winged Warbler nest
productivity and fledgling survival (i.e., full season produc-
tivity) at sheared sites would improve our understanding of
the quality of the habitat created by the shearing BMPs.
With that in mind, sites treated with a variety of conserva-
tion practices outlined in the Golden-winged Warbler
BMPs can yield high rates of nest survival (McNeil
et al., 2017; McNeil, Rodewald, Robinson, et al., 2020) and
fledgling survival (Fiss et al., 2020, 2021; Streby et al., 2016).

Although our study focused on the Golden-winged
Warbler, a wide variety of additional wildlife species are
imperiled due to early-successional habitat loss (Askins,
1998; King & Schlossberg, 2014). Data on the responses
of other species, including animals, plants, and other
taxa, to the shearing of woody vegetation are needed to
more fully understand both the positive and negative
effects of this management practice, particularly on spe-
cies of conservation concern. Federal and state agency
habitat improvement programs promote shearing to
improve habitat for species of conservation concern that
require shrubland habitats, such as the Sharp-tailed
Grouse (Tympanuchus phasianellus; USDA, 2007) and
American Woodcock (Scolopax minor; Johnson, 2020;
MDNR, 1994; Williamson, 2010) in the western Great
Lakes and the New England Cottontail (Sylvilagus
transitionalis; Litvaitis et al., 2021) in the Northeastern
United States. Although many BMPs currently focus on
charismatic birds and mammals, it is also important to
understand how nontarget (and potentially overlooked)
taxa respond to shearing (Litvaitis et al., 2021; Mathis
et al., 2021). As the use of shearing becomes increasingly
popular for shrubland management, development and
refinement of science-based BMPs specific to this practice
will remain important. As new information becomes
available, we recommend using an adaptive management
process to assess and improve shearing BMPs (Walters,
1986). Ultimately, our study provides support for the use
of shearing as a conservation practice in managing habi-
tat for Golden-winged Warblers in the western Great
Lakes region.
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