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Abstract

Ruffed grouse (Bonasa umbellus) populations are declining

throughout their range, which has prompted efforts to

understand drivers of the decline. Ruffed grouse monitoring

efforts often rely on acoustic drumming surveys, in which a

surveyor listens for the distinctive drumming sound that male

ruffed grouse produce during the breeding season. Field‐based

drumming surveys can fail to detect ruffed grouse when the

birds drum infrequently or irregularly, making this species an

excellent candidate for remote acoustic sensing with auto-

mated recording units (ARUs). An accurate automated

recognition method for ruffed grouse drumming could enable

effective and efficient use of ARU data for monitoring efforts;

however, no such tool is currently available. Here we develop

an automated method for detecting ruffed grouse drumming in

audio recordings. Our detector uses a signal processing

pipeline designed to recognize the accelerating pattern of

drumming. We show that the automated recognition method

accurately and efficiently detects drumming events in a set of

labeled ARU field recordings. In a case study with 56 locations

in Central Pennsylvania, we compared detections of ruffed

grouse from 4 survey methods: field‐based acoustic drumming

surveys, surveys conducted by humans listening to ARU

recordings, and automated recognition for both a 1‐day and
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a 28‐day period. Field‐based surveys detected drumming at 9

of 56 locations (16%), while surveys conducted by humans

listening to ARU recordings detected drumming at 8 locations

(14%). Using automated recognition, the 1‐day recording

period produced detections at 17 locations (30%) and the

28‐day recording period produced detections at 34 locations

(61%). Our case study supports the idea that automated

recognition can unlock the value of ARU datasets by

temporally expanding the survey period. We provide an

open‐source Python implementation of the recognition

method to support further use in ruffed grouse monitoring

efforts.
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The ruffed grouse (Bonasa umbellus) is a popular and declining game bird species with a wide range in North

America (Rusch et al. 2020). Ruffed grouse inhabit deciduous and coniferous forests with dense understories,

especially those dominated by aspen (Populus spp.; Rusch et al. 2020). Ruffed grouse select open, early successional

forests for nesting and brood rearing (Turnbull et al. 2004). Ruffed grouse typically nest in regenerating forest

6–15 years post‐disturbance until the canopy closes and wood stem density and ground vegetation diminishes

(Sharp 1963, Dessecker and McAuley 2001). Visual detection of ruffed grouse in dense understories is difficult, but

acoustic detection of males during the breeding season is comparatively easy. Breeding males advertise their

presence to females and other males by beating their wings to produce an accelerating sequence of low‐pitched

thumps known as drumming (Rusch et al. 2020).

Ruffed grouse populations have declined throughout the Appalachian Mountains region in recent

decades (−1.5%/yr; 95% CI = −3.1 – 0; Stauffer et al. 2018). Pennsylvania's second Breeding Bird Atlas

similarly reported a reduction in the species' range, especially in the western portion of the Commonwealth

(Wilson et al. 2012). Despite its popularity as a game bird, hunting is not thought to play a dominant role

in population declines (Rusch et al. 2020), and annual hunter harvests in Pennsylvania have decreased

steadily from 180,000 in 1998 to 10,000 in 2019 (Johnson 2020). Rather, ruffed grouse population declines

have been linked to 3 factors; habitat loss via forest maturation, habitat loss or degradation due to

fragmentation and land conversion, and the introduction of West Nile Virus (Porter and Jarzyna 2013,

Stauffer et al. 2018).

The ruffed grouse's popularity as a game species and its apparent population decline have spurred conservation

agencies and their partners to implement habitat management programs. In many cases, habitat management takes

the form of timber harvesting that allows the regeneration of understory, thus providing ephemeral nesting habitat

for female ruffed grouse (Rusch et al. 2020). In some regions that lack appropriate timber markets, habitat

management programs employ alternatives for creating early successional forest communities such as non‐

commercial practices and private lands incentive programs (Litvaitis 2003, Litvaitis et al. 2021). Given the

potentially confounding impacts of West Nile Virus and limited habitat availability, identifying where such habitat

management efforts have the greatest potential for success will require monitoring ruffed grouse at both stand and

regional scales.
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Acoustic drumming surveys are commonly used to monitor for ruffed grouse because, unlike alternative

survey methods (Hansen et al. 2015), they are rapid and non‐consumptive. Indeed, drumming surveys have

become the standard survey method for ruffed grouse employed by a variety of agencies and organizations

across many parts of the species' range (Zimmerman 2006, Dougherty 2008, Hansen et al. 2011, Stewart and

Sargent 2017, Witecha et al. 2019). Due to the practical constraints of surveying large areas, drumming

surveys are conducted during peak breeding periods and typically consist of either (1) short listening bouts

(i.e., a few minutes) at predetermined road‐side locations (Petraborg et al. 1953) such as those conducted

during the North American Breeding Bird Survey (Sauer et al. 2017), or (2) walking a transect along a road

while listening for drumming (Jones et al. 2005). Both survey designs can fail to detect ruffed grouse

presence because individual drumming activity can vary from day to day and with time of day (i.e., variable

availability for detection). Additionally, an observer's ability to perceive drumming can be influenced by wind

and rain conditions (Zimmerman and Gutiérrez 2007). Finally, many drumming surveys occur along roads and

may provide biased estimates of ruffed grouse presence across a landscape (Betts et al. 2007). The

shortcomings of field based surveys combined with the relatively distinct spectral characteristics of ruffed

grouse drumming make them an excellent candidate for automated acoustic monitoring.

Automated recording units (ARUs) may overcome challenges associated with surveying for ruffed grouse

by increasing temporal sampling effort (Borker et al. 2015, Colbert et al. 2015, Brauer et al. 2016, Darras

et al. 2019, Gibb et al. 2019). Recently, the availability of low‐cost ARUs such as the AudioMoth (Hill et al.

2019) has lowered the barrier to performing acoustic surveys at large spatial scales. In comparison to a typical

ruffed grouse drumming survey effort of 2 5‐ to 6‐min point counts per location per season (Petraborg et al.

1953), an AudioMoth might record for 90 mins per day on 60 consecutive days, increasing the total sampling

time by more than 2 orders of magnitude. Intuitively, the probability of acoustically detecting target species

is likely to increase both with the amount of time surveyed each day and with the number of survey dates

(McNeil et al. 2014, Wood et al. 2021). For ruffed grouse in particular, increased survey effort could

overcome issues of infrequent or inconsistent drumming and of suboptimal weather conditions for detecting

drumming. Moreover, deploying ARUs across landscapes could mitigate potential survey bias associated with

road‐based monitoring, as long as survey points are chosen with a rigorous, randomized sampling design

(Smith et al. 2017).

The value of an ARU sampling approach, however, is limited by the ability to efficiently extract species

detections from audio data. Since deployments of ARUs can easily accumulate thousands of hours of audio

recordings in a season, manual review of audio data from such deployments is seldom practical. Instead,

researchers must either select relatively small portions of audio to manually review or use automated

recognition methods to more efficiently analyze large datasets (Knight et al. 2017, Gibb et al. 2019). In

general, open‐source automated recognition methods for automated acoustic monitoring are not currently

available for most taxa, and face many challenges such as the lack of labeled audio recordings and lack of

generalizability (Knight et al. 2017, Stowell 2022). As a result, most ecological studies still rely on manual

review of a limited subset of ARU recordings to extract species presence information (Venier et al. 2012,

Sidie‐Slettedahl et al. 2015, Vold et al. 2017, Sugai et al. 2019, Wilhite et al. 2020). The use of automated

recognition methods to process large quantities of ARU data can greatly increase the number of detections

relative to annotation effort even when recognizer precision is poor (Shonfield 2018, Knight et al. 2022).

Thus, while manual review of ARU recordings can provide useful information to complement data from field‐

based surveys, the expanded temporal survey periods of ARUs become most valuable when used in

combination with an automated recognition tool.

As true for most taxa, none of the currently available methods for automated recognition of ruffed

grouse have been validated on ARU datasets. Template‐based cross‐correlation (also called template

matching) of spectrograms (Goëau et al. 2014) could be used to automate detection of drumming in audio,

but this approach has been replaced by machine learning approaches (Stowell 2022) because it is
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computationally expensive and generalizes poorly across individual and geographic variation. Machine

learning methods for bird sounds have improved in recent years thanks to the use of deep learning

algorithms, but still perform with low accuracy on soundscape recordings where vocalizations may be distant

and overlapping (Kahl et al. 2020, Stowell 2022). The BirdNET classifier (Kahl et al. 2021) is the only

published machine learning method we are aware of that automates the recognition of ruffed grouse

presence in audio recordings. BirdNET is a supervised deep learning classifier that uses methods adapted

from image recognition to detect bird vocalizations in a spectrogram, a visual frequency versus time

representation of audio (Figure 1).

We developed an open‐source automated recognition method for identifying ruffed grouse drumming events

in audio recordings. Our automated recognition method recognizes drumming events through signal processing,

rather than with template‐based cross‐correlation or deep learning. We test the accuracy of the detector on a

labeled set of audio recordings and compare its performance to the BirdNET classifier. We also conduct a pilot

study with ARUs at 56 locations in Pennsylvania and compare detections across 4 survey methods: field‐based

human point counts, ARU‐based human point counts, and automated recognition on ARU data from 1‐day and

28‐day periods.

STUDY AREA

Our study area consisted of 3 State Game Lands managed by the Pennsylvania Game Commission (PGC) in north

central Pennsylvania, USA (see Parker et al. 2020 for a detailed description of study area). Each State Game Land

(State Game Lands 033, 060, and 100, see Pennsylvania Game Commission 2022) was dominated by forest

(88–94%), comprised of mostly dry‐oak (Quercus spp.) heath, dry‐oak mixed‐hardwood, and red maple (Acer rubrum)

cover types. Elevations for the study sites ranged from 530 to 762 meters. We assessed ruffed grouse drumming in

10 regenerating stands where overstory removal timber harvests occurred between 2009 and 2012 (meaning that

8 to 11 years had elapsed since harvest at the time of our pilot study).

(A)

(B)

F IGURE 1 Spectrograms of ruffed grouse drumming events detected by the automated method: (A) close
event, audible on headphones; (B) distant event, not audible but visible on spectrogram. Darker pixels indicate more
energy at a given frequency and time.
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METHODS

We deployed 60 AudioMoth acoustic recorders within the 10 regenerating timber harvests selected for our case

study. Survey locations were spaced at least 200 meters apart. AudioMoths were programmed to record audio at a

32 kHz sampling rate for 3 30min periods each morning and recorded for 4 weeks during peak ruffed grouse

courtship, from 19 April to 16 May 2020. Four devices malfunctioned or were lost during the deployment (e.g.,

water or black bear [Ursus americanus] damage), resulting in 56 locations with audio recordings distributed across

the 3 State Game Lands (Figure 2).

We surveyed for ruffed grouse at each of the 56 locations using 4 methods which reflect realistic alternatives

for a monitoring effort:

1. Field‐based human point counts: We conducted a single 10‐min acoustic drumming survey at each ARU location

between 15–17 May 2020 (Ralph et al. 1995, Bibby et al. 2000). We will refer to these acoustic drumming

surveys as field‐based human point counts to distinguish them from the alternate methods described below. We

completed all surveys between 15minutes and 4 hours post‐sunrise. Each survey was conducted by a single

observer. Upon arriving at each point, observers waited 1minute before initiating the survey to allow the birds

to settle down after potentially being disturbed (Bibby et al. 2000). Surveys were not conducted in unfavorable

weather conditions, such as strong wind (>4 on Beaufort wind index) or rain.

2. Automated recording unit‐based human point counts: We performed 5min acoustic drumming surveys on 4

dates at each location by listening to the audio recorded by ARUs at each location and annotating all drumming

events using Raven Pro (Bioacoustics Research Program 2019). The 4 ARU‐based human point count dates were

spaced across the ruffed grouse monitoring season (25 April, 1 May, 7 May, and 16 May) and contained audio

from 07:40–07:45 Eastern Daylight Time. This approach improves consistency of monitoring by using ARU

recordings to survey each location simultaneously. All annotations of ruffed grouse drumming were cross

evaluated by a second reviewer for accuracy. The ARU‐based human point count effort resulted in a total of 224

annotated 5‐minute audio clips.

3. Automated recognition for a 1‐day period: We developed an automated recognition method for recognizing

ruffed grouse drumming in ARU recordings. We then ran the automated procedure on AudioMoth recordings

acquired on 16 May 2020 from each survey location and performed a manual verification process which we also

describe below. Because we annotated the period from 07:40–07:45 on this date during ARU‐based human

point counts and used the labels to tune model parameters, we excluded those 5‐minute segments from this

analysis. We analyzed the remaining 85mins of audio for each location. To verify drumming detections from the

automated method, we considered all sequences detected by our method candidate detections and extracted

F IGURE 2 The 56 survey locations were distributed across 3 State Game Lands (SGLs). Survey locations are
marked in blue if we verified an automated detection during the 1‐day survey period and in black if we verified a
detection during the 28‐day survey but not during the 1‐day survey. Points without a detection are marked with an
empty circle.
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10 second audio clips centered on each candidate detection. We manually reviewed the 10 second audio clips

by listening to the audio and visually inspecting a spectrogram of the low frequencies (0–200 Hz). For each

location, we sorted the candidate detections by the number of points in the detected sequence (from most to

least) and reviewed the audio clips until (a) the location had a human‐verified detection, or (b) we had reviewed

all candidate detections for the location. All verified detections were additionally reviewed by a second

annotator for accuracy. This process resulted in a set of manually verified ruffed grouse detections across the 56

locations.

4. Automated recognition for a 28‐day period: We repeated the automated recognition procedure (3), but included

recordings from the entire 28‐day ARU survey period (19 April to 16 May 2020). Again, audio segments that

were part of the validation set were excluded from this analysis. This resulted in a set of manually verified ruffed

grouse detections from automated detections on 2,515minutes of audio (90*28 – 5) for each site.

Developing an automated recognition procedure

We developed an automated recognition method to detect ruffed grouse drumming events in audio recordings using a

series of signal processing operations. Our automated recognition method searches for the distinctive structure of low‐

pitched, accelerating thumps (each of which is a wingbeat) that make up a drumming display (Figure 1). During analysis of

audio data, recordings were split into 1‐minute clips, and each clip was analyzed using this recognition method. Here, we

describe the 4 signal processing steps used in the automated recognition method.

First, we used a continuous wavelet transform (Jordan et al. 1997) with a Morlet wavelet tuned to 50Hz to

extract the low frequency band where ruffed grouse drumming is strongest while removing most background noise

(Figure 3A,B). The continuous wavelet transform retains high time resolution and isolates a specific frequency of

interest, resulting in a one‐dimensional signal (Addison 2018). Because we were only interested in low‐pitched

sounds, we downsampled the audio sampling rate from 32,000 Hz to 400Hz before performing the continuous

wavelet transform. Downsampling the audio greatly reduced the computational cost of the continuous wavelet

transform operation. When we applied the continuous wavelet transform to an audio signal containing a drumming

event, the spikes in the resulting signal corresponded to individual thumps from the bird's wingbeats (Figure 3B).

Next, we processed the resulting signal to better isolate the spikes from ruffed grouse drumming (Figure 3C). This

involved normalizing the signal (dividing by the maximum value), squaring the signal to create positive values, taking

the magnitude of the Hilbert transform to trace the amplitude modulation envelope (as demonstrated in Smith

2021), and normalizing the signal once again. Next, we located the temporal positions of strong spikes in the signal

(Figure 3C, blue dots) using the peak‐finding algorithm scipy.signal.find_peaks from the Python package SciPy

(version 1.5.1, Virtanen et al. 2020). We generated a 2‐dimensional feature y(t) consisting of the times of detected

peaks (t) and the forward difference of time between the same detected peaks (y) (Figure 3D). Because the

individual thumps of a ruffed grouse drum accelerate in time, peaks extracted from a drumming event created the

smooth downward trend in a plot of y versus t (Figure 3D). We observed that this downward trend in a plot of

forward time difference between detected peaks (y) versus time (t) was distinctive to ruffed grouse drumming

events and was unlikely to occur by chance in low frequency background noise (see examples in Supporting

Information). Then, we applied an algorithm to detect drumming events in the y(t) feature. The algorithm, inspired

by bat detection filters (Britzke and Murray 2000), searches for a consistent downward trend in the y versus t plot

that matches the shape of the feature we observed for drumming events (Figure 3D). Progressing iteratively

through the points in the y(t) feature, the algorithm adds points to a candidate drumming sequence if they meet a

set of conditions relative to the preceding points in the candidate sequence (Table 1, Conditions A‐C). Points that

do not meet these conditions are considered invalid and are not added to the candidate sequence. The candidate

sequence is terminated when there are over 3 consecutive invalid points (Table 1, Condition D) or over 0.8 seconds

have elapsed since the previous point in the sequence (Table 1, Condition E). The candidate sequence is considered
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(A)

(B)

(C)

(D)

F IGURE 3 Drumming events in an audio signal were detected in 4 steps: a continuous wavelet transform (CWT)
isolated the 50 Hz content from an audio signal (A, B); normalizing, squaring, and smoothing the signal isolated
strong peaks (C); peak‐detection localized peaks in time (c, blue dots); drumming events were detected based on
their smooth downward curve in a plot of the forward difference of peak times, y, versus peak time (D).
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a detection if it is of an appropriate length to represent an entire drumming event or a substantial fraction of a

drumming event (Table 1, Conditions F‐G), and is otherwise discarded. The process of searching for drumming

sequences then continues with the subsequent point and an empty candidate sequence. The algorithm successfully

detects drumming events in the y(t) feature, even when the original audio signal has significantly louder concurrent

events (Figure 3D).

We chose the parameters used in the algorithm to reflect observed patterns in ruffed grouse drumming events.

We refined parameter values by iteratively applying the algorithm to a validation dataset (see below), inspecting

examples of false positives and false negatives, and modifying parameters to improve performance. We discuss

parameter tuning in detail in the Appendix and provide a Python implementation of the algorithm in the Supporting

Information. The algorithm is also implemented in the open‐source bioacoustics package OpenSoundscape (Lapp

et al. 2022) as find_accel_sequences.

Evaluating detection methods

We used the annotated audio data from the ARU‐based human point counts as a validation set to measure the

accuracy of our automated recognition method and of BirdNET. We split the 224 labeled 5‐minute audio files into

1,120 1‐min clips and labeled ruffed grouse present in all 1‐minute clips that contained an annotation for ruffed

grouse drumming. We refer to the created set of labeled clips as the validation set. Our automated recognition

method predicted that ruffed grouse was present in a 1‐minute audio clip if it detected at least one drumming event

in the clip. We evaluated the performance of BirdNET and our automated recognition method on the presence or

absence of ruffed grouse in 1‐minute audio clips in the validation set using the metrics recommended by Knight

et al. (2017): precision (fraction of detections that truly contained drumming), recall (fraction of all drumming events

that were captured), and F1 score (harmonic mean of precision and recall). We could not calculate areas under the

receiver‐operating curve or precision‐recall curve for our method because it does not output continuous scores.

The BirdNET classifier uses a convolutional neural network to detect the presence of 500 North

American bird species (Kahl et al. 2021). To evaluate the performance of BirdNET for detecting ruffed grouse,

TABLE 1 Conditions used in ruffed grouse drum detection algorithm.

Condition Description Value(s) Purpose

A Time elapsed from current point to most
recent point included in candidate

sequence (i.e., Δt)

0.05 to 0.8 sec Avoid very short or very long
intervals between peaks

B Difference in y between current point and
most recent point in candidate
sequence (i.e., yΔ )

−0.2 to 0.0 sec Sequence should accelerate

C Difference in yΔ between current and
most recent point in candidate
sequence

−0.05 to 0.15 sec Sequence should not suddenly
change acceleration

D Number of consecutive points that can be
skipped within a sequence

3 points Allow sequence to continue past
limited number of invalid points

E Maximum time between consecutive
points in a sequence

0.8 sec After a long pause, begin a new
sequence

F Duration of entire sequence 1 to 15 sec Match fragment or entire drum

G Number of points in entire sequence 9 to 100 points Match fragment or entire drum

8 of 17 | LAPP ET AL.
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we downloaded and installed the BirdNET model and ran predictions on our labeled set of audio files

according to instructions on the GitHub repository (Kahl 2022). By default, BirdNET produces confidence

scores for the presence of a species on 3‐second audio clips. To generate predictions for 1‐minute clips with

BirdNET, we took the maximum score of any 3‐second clip across each 1‐minute file. We chose the

prediction threshold for BirdNET that maximized the F1 score on the validation set. We then used the case

study as a measure of our method's utility for real‐world monitoring efforts. We compared the number of

locations with ruffed grouse detections for each of the 4 survey methods: (1) field‐based human point counts,

(2) ARU‐based human point counts, (3) automated recognition on a 1‐day period, and (4) automated

recognition on a 28‐day period. We note that ruffed grouse drumming may be detectable at distances greater

than 100 meters, and therefore a single drumming event could potentially be detected at multiple survey

locations. Furthermore, during the 28‐day period ruffed grouse may have moved between the survey

locations. Thus, as movements would violate the assumptions of a single‐season occupancy model

(MacKenzie et al. 2018), the number of detections in our case study is not an estimate of occupancy.

RESULTS

Our automated recognition method accurately detected drumming in the validation set. In the validation set,

manual labeling determined that a total of 37 out of 1,120 1‐minute clips contained ruffed grouse drumming. Our

method successfully detected drumming in 29 of these 37 clips (78% recall) and returned 12 false‐positive

detections (71% precision, F1 score of 74%). We note that every 5‐minute continuous segment of annotated data in

the validation set that had an annotation also had a verified automated detection; in other words, recall at the

5‐minute level was 100%. The BirdNET classifier (Kahl et al. 2021) performed poorly on the validation set, achieving

a maximum F1 score of 21% using a threshold score of 0.43. At a threshold score of 0.43, BirdNET detected ruffed

grouse in 5 of 37 clips with drumming (13% recall) and produced 5 false‐positive detections (50% precision).

In our case study, the automated recognition method detected drumming at more locations than both

field‐ and ARU‐based human point counts. Field‐based human point counts detected ruffed grouse at 9 of 56

locations (16%), while ARU‐based human point counts detected ruffed grouse at 8 locations (14%). On

16 May 2020 our automated recognition procedure resulted in human‐verified detections at

17 locations (30%), including 8 of the 9 locations with detections during field‐based human point counts.

The remaining location produced 2 possible detections that contained low frequency drum‐like patterns, but

we could not verify that they were ruffed grouse drumming events. Automated recognition on ARU data from

the 28‐day survey period resulted in human‐verified detections at 34 of 56 locations (61%), including all

9 locations with detections during field‐based human point counts.

Analyzing 4,703 30‐minute audio clips (2,351 hours) from the ARU data with the automated recognition

method took 75minutes on a parallelized computing system with 28 parallelized CPU tasks and generated 3,418

candidate detections. By following our manual review procedure for candidate detections starting with the longest

sequences, we only needed to manually inspect 97 10‐second clips (0.01% of audio data). After reviewing this small

subset of candidate detections, every location had either (1) a human‐verified detection or (2) no further

unreviewed detections.

DISCUSSION

The accuracy of our method, combined with the results of the case study, suggests that the ruffed grouse

recognition method presented here could serve as an effective tool for detecting drumming in temporally expansive

ARU datasets. Using automated recognition on 1 day of recordings, which increased the survey effort from
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10minutes of field‐based detection to 85minutes of detection on recorded audio, nearly doubled the number of

locations with detections from 9 to 17. Furthermore, expanding the survey period from 1 day to 28 days doubled

the number of sites with detections again, for a total of 34 locations with detections. Our results support the idea

that using ARU data can increase detections of a target species by expanding the survey period on 2 temporal

scales: the amount of time surveyed on a single day and the number of days surveyed. While achieving 1 of these 2

temporal expansions may be feasible using manual review of audio, achieving both without the help of automated

recognition would be cost ineffective, requiring thousands of hours of manual annotation. Neither temporal

expansion during a day nor temporal expansion across multiple days are particularly feasible with traditional point

count sampling. Therefore, in scenarios where a focal species produces temporally scarce audible events,

automated recognition may be essential for extracting species detections from large ARU datasets.

We manually inspected false negatives in the validation set to investigate why our automated recognition

method failed to recognize some drumming events. Out of 10 1‐minute clips annotated with ruffed grouse that did

not have an automated detection, 2 had drumming events partially cut off at the beginning or end of the clip. The

issue of missing drumming at the ends could be resolved by using overlapping analysis windows, though the results

would need to be interpreted with caution because single drumming events could be detected multiple times. The

other 8 false‐negative clips contained faint drumming events, often with substantial background noise. Four of the

8 had detected series of 6 or 7 peaks, slightly short of the threshold of 9 peaks for a detection. The false negatives

represent the outer limit of the radius of detection for this study's combination of ARUs, environmental conditions,

and automated recognition method.

To investigate whether the same drumming events were detected at multiple recorders, we examined

annotations in the validation set for detections that may have been the same event. Because ARU clocks can

drift by an estimated several seconds per month, we examined all annotations whose start times were within

10 seconds of each other. We found 4 instances in the validation set where annotated grouse drumming events

occurred at approximately the same time. Two of the events came from a set of 3 recorders, each spaced less

than 260 meters apart from the others, and could represent multiple detections of the same event or counter‐

drumming between individuals. The other 2 instances were from recorders spaced over 5 kilometers apart and

presumably occurred due to random chance rather than 2 recorders detecting the same event. Notably, we did

not detect simultaneous drumming events on other combinations of recorders despite there being 33 pairs of

recorders with spacing between 200 and 300 meters for which at least 1 of the 2 recorders had a drumming

detection.

Measuring the area surveyed by an ARU is important for calibrating results of monitoring between ARUs and

human surveyors (VanWilgenburg et al. 2017, Yip et al. 2017, Darras et al. 2018) and can aid in calculating species

distribution (Leseberg et al. 2022) or density if site‐level heterogeneity is modeled (Darras et al. 2016). Future work

should experimentally quantify the sampling area covered by ARU surveys and field‐based human point counts by

measuring the effective detection radius of ruffed grouse drumming for each detection method (Darras et al. 2018),

potentially also modeling detection as a function of covariates. In contrast to most avian vocalizations (Shonfield

and Bayne 2017), the effective detection radius for ruffed grouse drumming may be larger for ARU recordings than

for field‐based human point counts because it contains energy at very low frequencies. The peak frequency in

ruffed grouse drumming (45 Hz) is near the lower bound of human hearing, and human hearing progressively

decreases in sensitivity for low frequencies (Suzuki and Takeshima 2004). Additionally, higher frequencies are

attenuated more than lower frequencies as sound travels through air (Stokes' law of sound attenuation, Stokes

1880) and as a result, as a sound source becomes progressively farther away, only the lower frequencies reach the

listener. For ruffed grouse drumming, the combination of these 2 phenomena can mean that very distant drums

(with only the low frequency content remaining) are inaudible to the human ear but can still be captured by an ARU

and seen on a spectrogram. We noted that during manual review of audio for the validation set, many of the

drumming events detected by the automated recognition method were inaudible when played back over closed‐

back headphones but could be seen in the lowest frequencies of a spectrogram (Figure 1B, for example).

10 of 17 | LAPP ET AL.
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While many contemporary automated recognition approaches in bioacoustics use convolutional neural

networks or other supervised deep learning approaches (Stowell et al. 2019, Kahl et al. 2020), developers of a

new bioacoustic recognition method might choose to use signal processing rather than supervised deep

learning for 2 reasons. First, supervised learning requires large amounts of labeled audio data for training,

which is not available for most taxa besides North American and European birds. Second, the features of a

signal processing detector are hand‐built and therefore easily interpretable, while features synthesized by

deep learning approaches can be difficult to interpret. For example, detected sequences from our method

that contain 15 versus 30 points are directly interpretable as containing fewer or more wingbeats from a

drumming event, while a low or high score produced by a deep learning method cannot be related directly to

any specific quality of the original audio event. As a result, though both deep learning and signal processing

approaches can result in false‐positive and false‐negative detections, the reason for misdetections may be

easier to interpret when using a signal processing approach. Additionally, because signal processing

approaches often home in on specific distinguishing characteristics of a signal, such as the low frequency

accelerating pattern of drumming, they can sometimes lead to highly accurate detection methods that

outperform deep learning approaches (Lapp et al. 2021).

Signal processing methods have some disadvantages compared to deep learning approaches (reviewed by

Stowell 2022). Deep learning algorithms can be trained to detect many classes at a time rather than only a single

class, enabling the possibility of community‐level analyses (Stowell et al. 2019, Kahl et al. 2020). Additionally, a rule‐

based approach like ours enforces a specific structure for the target vocalization, which could be problematic if the

pattern of drumming differs substantially across individuals or across regions (Garcia et al. 2012). Deep learning

algorithms such as convolutional neural networks can learn high‐level representations of audio that incorporate

variability, potentially allowing them to generalize better to new scenarios (Stowell et al. 2019). We note, however,

that both signal processing and deep learning approaches are likely to decrease in accuracy or fail completely when

the data analyzed is substantially different from the data used for training and validation. Finally, deep learning

approaches can provide continuous outputs rather than discretized or binary detections, which could be useful for

interpreting and statistically analyzing the outputs of a model (Knight et al. 2017, Rhinehart et al. 2020, Leseberg

et al. 2022). Alternatives to supervised deep learning and signal processing include supervised shallow learning

(relying on hand‐crafted features; Priyadarshani et al. 2018) and unsupervised learning (Stowell and Plumbley 2014)

which is often used in tandem with supervised learning.

We believe that effectively isolating the signal of ruffed grouse drumming from low‐frequency noise was

critical to the success of our detection method. Because the BirdNET classifier is designed to simultaneously detect

several hundred bird species (including passerines with high‐frequency calls), it is not optimized for extracting low

frequencies. The BirdNET classifier created a spectrogram that spanned a range of 150 Hz to 15 kHz. The peak

frequencies of drumming (around 45 Hz; Garcia et al. 2012) were excluded and low frequencies were combined into

the lowest pixels of the spectrogram, which likely made it difficult for the classifier to detect distant drumming

events in the presence of other low‐frequency sounds. In contrast, by using a continuous wavelet transform, our

method isolated the frequency band of highest energy for ruffed grouse drumming and generally achieved a high

signal to noise ratio even in the presence of low‐frequency noise (see Figure 3A–C). This difference in feature

representation helps to explain why BirdNET performed poorly on the validation set while our automated

recognition method performed well.

Wavelets are useful feature extraction tools that have been widely adopted in various fields from physics

to economics (Addison 2018) and have also been applied to bioacoustics problems such as denoising (Xie

et al. 2021), pattern recognition (Bardeli et al. 2010), and feature extraction (Colonna et al. 2012, Kiskin et al.

2020). Sibul (1999) reviews wavelet transforms and their application to bioacoustics signal processing. The

continuous wavelet transform is computationally expensive compared to the often‐used Fourier transform,

which can often extract similar information from a signal. However, wavelets can achieve higher time

resolution than the Fourier transform and are useful when trying to isolate a specific frequency from a noisy

AUTOMATED RECOGNITION OF RUFFED GROUSE DRUMMING | 11 of 17
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signal (Addison 2018). In our case, we greatly reduced the computational cost of continuous wavelet analysis

by downsampling audio from 32,000 Hz to 400 Hz, which was possible because we were only interested in

low frequency sounds. Additionally, we only performed a single continuous wavelet transform tuned to

50 Hz, whereas creating wavelet features for multiple frequencies requires one continuous wavelet

transform per frequency. We recommend considering continuous wavelet transforms as bioacoustic feature

extraction tools when the computational costs can be avoided or when spectrograms cannot provide

sufficient time resolution at a desired frequency resolution.

In the broader context of automated acoustic monitoring, the detection method we presented here could

be adapted with minor changes to detect acoustic signals from other species. For instance, the algorithm

could be easily modified to detect decelerating rather than accelerating patterns. Notably, the method will

increase linearly in computational cost with the frequency of the target vocalization because the continuous

wavelet transform operation will need to be performed on audio with a sampling rate of at least twice the

target frequency. For vocalizations that have a steady periodic structure that does not speed up or slow

down, the RIBBIT method (Lapp et al. 2021) of detecting sounds with periodic amplitude modulation may be

more effective, though experimentation is warranted on a species‐by‐species basis. Both the RIBBIT method

and the method presented here are available in OpenSoundscape (Lapp et al. 2022b) for open‐source use and

modification.

We highlight 3 considerations for the application of automated acoustic monitoring and automated recognition

to ruffed grouse monitoring efforts. First, the entire process from planning a study to deployment, pick up, data

management, analysis, and reporting should be considered before beginning an automated acoustic monitoring

project. The manual effort required to analyze or verify the results of a recognizer will depend on the type of

analysis required. For occupancy analyses, it is sufficient to verify just one detection per site and sampling period,

while other analyses may require more manual effort. Second, and relatedly, the assumptions of occupancy

modeling (or other models that will be used to analyze resulting data) should inform the choice of survey locations.

Specifically, survey locations should be distributed with a minimum spacing of twice the maximum estimated radius

of detection to minimize the chances of detecting a single individual at multiple points. Even with sufficient spacing

to avoid detecting the same drumming event at multiple recorders, the assumptions of an occupancy model may be

violated during a season; in particular, the assumption of closure may not hold if individual ruffed grouse move

across the landscape. Third, the total cost of a monitoring effort should be considered when choosing between in‐

person point counts, automated acoustic monitoring, or a combination of the 2. Deploying and picking up

automated recording equipment requires 2 visits to each survey point per season, but unlike acoustic drumming

surveys, these visits can be conducted by untrained personnel, for instance by mailing ARUs to private landowners

or agency land managers.

RESEARCH IMPLICATIONS

We developed an automated ruffed grouse recognition method that accurately extracts drumming events from

ARU audio recordings. Our results highlight the value of automated recognition methods combined with automated

acoustic monitoring for species that produce temporally scarce audible events. We provide open‐source code for

the ruffed grouse recognition method in the bioacoustics Python package OpenSoundscape (Lapp et al. 2022b) to

support its use in research and monitoring programs. Monitoring how ruffed grouse populations react to various

management approaches will be critical to the success of conservation efforts. By deploying ARUs across a

landscape and using this automated method to detect drumming events, conservation practitioners can implement

cost‐effective and large‐scale ruffed grouse monitor programs. Considering the difficulty of monitoring this species

by traditional means, the opportunity to expand survey efforts temporally and spatially using this tool could be

central to the success of ruffed grouse conservation agendas.
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SUPPORTING INFORMATION

Additional supporting information may be found in the online version of this article at the publisher’s website.

Supporting information includes (1) a Python notebook with a demonstration of the recognition method and (2) an

implementation of the drum detection algorithm in Python.
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APPENDIX A: PARAMETER TUNING FOR THE RECOGNITION METHOD

We chose the parameters used in the drum detection algorithm to reflect observed patterns in ruffed grouse

drumming events. We refined parameter values by iteratively applying the algorithm to a validation dataset (see

below), inspecting examples of false positives and false negatives, and modifying parameters to improve

performance. The reasoning behind each parameter choice is detailed below. Once we had tuned the parameters of

the algorithm, it successfully detected drumming events in the y(t) feature (Figure 3D) while ignoring other low‐

frequency noises (see example analysis in Supporting Information).
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The conditions and corresponding values used in the algorithm are listed in Table 1. Conditions A, B, and C

evaluate whether each subsequent point in y(t) is valid. If the point is valid, it is added to the current candidate

sequence. Condition A constrains the backwards difference ( tΔ ) of time between consecutive points in a candidate

series. In Condition A, the upper limit of tΔ ensures that peaks far apart in time are not considered part of the same

sequence, while the lower limit of tΔ avoids counting very closely spaced double‐peaks as independent. Note that

tΔ , the backwards difference between a candidate point and the latest point included in the candidate series, is

distinct from y, the forward difference between all detected peaks. The algorithm uses y as a pre‐generated feature

vector but calculates tΔ during the iterative search for sequences. Condition B constrains the backwards difference

of y ( yΔ ) between consecutive points in a candidate series. Condition B confines yΔ to small negative values

because each subsequent y value for the peaks in an accelerating drumming sequence will be slightly lower than the

last, but not greatly lower. Condition C constrains the second backwards difference of y between points in a

candidate series. We added Condition C in addition to Conditions A and B because we observed that some false

detections showed sharp upward or downward curvature on a plot of y versus t, while drumming events

consistently show a slightly positive second backward difference of y (e.g., Figure 3D).

Conditions D and E determine when a candidate sequence is terminated and a new sequence is started.

Condition D, which limits the number of points that can be skipped over between 2 consecutive points, was set to 3

to allow some noisy intermediate peaks to be skipped (for instance, see Figure 3D at 7.0 seconds) without allowing

excessive noise. Similarly, Condition E limits the amount of time between peaks in a sequence because after a long

pause, peaks are unlikely to belong to the same sequence.

Conditions F and G constrain the sequence to lengths matching all or at least a significant fragment of a ruffed

grouse drumming event. Drumming events typically last 9–10 seconds and contain 30–40 accelerating wingbeats.

After the accelerating portion of the drumming display there is an additional sequence of about 10 wingbeats that

slow down (Figure 3C, 7–9 seconds), but we designed our detector to ignore this part of the drumming event.

Sequences lasting longer than 15 seconds or with more than 100 peaks are likely to be false positives caused by

machinery or other periodic low‐frequency noise, while sequences lasting under 1 second or with less than 9 peaks

could be caused by any number of low frequency events.

We also chose the 1‐minute clip length as input to the algorithm by experimenting with different clip lengths

and testing performance on the validation set. Because the continuous wavelet transform signal is normalized

during our post‐processing steps, changing the length of the audio clips fed into the detector could affect the

performance. Specifically, longer audio clips are more likely to contain a loud event, which would reduce the levels

of other events in the normalized signal. Therefore, we would expect the recognition algorithm's recall to decrease

with increasing audio clip length and we would expect its precision to decrease with decreasing audio clip length.
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